Crate der[−][src]
Expand description
RustCrypto: ASN.1 DER
Pure Rust embedded-friendly implementation of the Distinguished Encoding Rules (DER) for Abstract Syntax Notation One (ASN.1) as described in ITU X.690.
About
This crate provides a no_std
-friendly implementation of a subset of ASN.1 DER
necessary for decoding/encoding the following cryptography-related formats
implemented as crates maintained by the RustCrypto project:
pkcs1
: RSA Cryptography Specificationspkcs5
: Password-Based Cryptography Specificationpkcs7
: Cryptographic Message Syntaxpkcs8
: Private-Key Information Syntax Specificationsec1
: Elliptic Curve Cryptographyspki
: X.509 Subject Public Key Info
The core implementation avoids any heap usage (with convenience methods
that allocate gated under the off-by-default alloc
feature).
The DER decoder attempts to ensure that the input document is in canonical form, and will return errors if non-canonical productions are encountered.
Features
- Rich support for ASN.1 types used by PKCS/PKIX documents
- Performs DER canonicalization checks at decoding time
no_std
friendly: supports “heapless” usage or optionally supports thealloc
crate if desired- No hard dependencies! Self-contained implementation with optional
integrations with the following crates, all of which are
no_std
friendly:const-oid
: const-friendly OID implementationcrypto-bigint
: constant-time bignum librarytime
crate: date/time library
Minimum Supported Rust Version
This crate requires Rust 1.56 at a minimum.
We may change the MSRV in the future, but it will be accompanied by a minor version bump.
License
Licensed under either of:
at your option.
Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.
Usage
Decodable
and Encodable
traits
The Decodable
and Encodable
traits are the core abstractions on
which this crate is built and control what types can be (de)serialized
as ASN.1 DER.
The traits are impl’d for the following Rust core types:
()
: ASN.1NULL
. See alsoNull
.bool
: ASN.1BOOLEAN
.i8
,i16
,i32
,i64
,i128
: ASN.1INTEGER
.u8
,u16
,u32
,u64
,u128
: ASN.1INTEGER
.str
,String
: ASN.1UTF8String
.String
requiresalloc
feature. See alsoUtf8String
. Requiresalloc
feature. See alsoSetOf
.Option
: ASN.1OPTIONAL
.SystemTime
: ASN.1GeneralizedTime
. Requiresstd
feature.Vec
: ASN.1SEQUENCE OF
. Requiresalloc
feature.[T; N]
: ASN.1SEQUENCE OF
. See alsoSequenceOf
.
The following ASN.1 types provided by this crate also impl these traits:
Any
: ASN.1ANY
BitString
: ASN.1BIT STRING
GeneralizedTime
: ASN.1GeneralizedTime
Ia5String
: ASN.1IA5String
Null
: ASN.1NULL
ObjectIdentifier
: ASN.1OBJECT IDENTIFIER
OctetString
: ASN.1OCTET STRING
PrintableString
: ASN.1PrintableString
(ASCII subset)SequenceOf
: ASN.1SEQUENCE OF
SetOf
,SetOfVec
: ASN.1SET OF
UIntBytes
: ASN.1 unsignedINTEGER
with raw access to encoded bytesUtcTime
: ASN.1UTCTime
Utf8String
: ASN.1UTF8String
Context specific fields can be modeled using these generic types:
ContextSpecific
: decoder/encoder for owned context-specific fieldsContextSpecificRef
: encode-only type for references to context-specific fields
Example
The following example implements X.509’s AlgorithmIdentifier
message type
as defined in RFC 5280 Section 4.1.1.2.
The ASN.1 schema for this message type is as follows:
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }
Structured ASN.1 messages are typically encoded as a SEQUENCE
, which
this crate maps to a Rust struct using the Sequence
trait. This
trait is bounded on the Decodable
trait and provides a blanket impl
of the Encodable
trait, so any type which impls Sequence
can be
used for both decoding and encoding.
The Decoder
and Encoder
types provide the decoding/encoding API
respectively, and are designed to work in conjunction with concrete ASN.1
types which impl the Decodable
and Encodable
traits, including
all types which impl the Sequence
trait.
The following code example shows how to define a struct which maps to the
above schema, as well as impl the Sequence
trait for that struct:
// Note: the following example does not require the `std` feature at all.
// It does leverage the `alloc` feature, but also provides instructions for
// "heapless" usage when the `alloc` feature is disabled.
use der::{
asn1::{Any, ObjectIdentifier},
Decodable, Decoder, Encodable, Sequence
};
/// X.509 `AlgorithmIdentifier`.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct AlgorithmIdentifier<'a> {
/// This field contains an ASN.1 `OBJECT IDENTIFIER`, a.k.a. OID.
pub algorithm: ObjectIdentifier,
/// This field is `OPTIONAL` and contains the ASN.1 `ANY` type, which
/// in this example allows arbitrary algorithm-defined parameters.
pub parameters: Option<Any<'a>>
}
impl<'a> Decodable<'a> for AlgorithmIdentifier<'a> {
fn decode(decoder: &mut Decoder<'a>) -> der::Result<Self> {
// The `Decoder::sequence` method decodes an ASN.1 `SEQUENCE` tag
// and length then calls the provided `FnOnce` with a nested
// `der::Decoder` which can be used to decode it.
decoder.sequence(|decoder| {
// The `der::Decoder::Decode` method can be used to decode any
// type which impls the `Decodable` trait, which is impl'd for
// all of the ASN.1 built-in types in the `der` crate.
//
// Note that if your struct's fields don't contain an ASN.1
// built-in type specifically, there are also helper methods
// for all of the built-in types supported by this library
// which can be used to select a specific type.
//
// For example, another way of decoding this particular field,
// which contains an ASN.1 `OBJECT IDENTIFIER`, is by calling
// `decoder.oid()`. Similar methods are defined for other
// ASN.1 built-in types.
let algorithm = decoder.decode()?;
// This field contains an ASN.1 `OPTIONAL` type. The `der` crate
// maps this directly to Rust's `Option` type and provides
// impls of the `Decodable` and `Encodable` traits for `Option`.
// To explicitly request an `OPTIONAL` type be decoded, use the
// `decoder.optional()` method.
let parameters = decoder.decode()?;
// The value returned from the provided `FnOnce` will be
// returned from the `any.sequence(...)` call above.
// Note that the entire sequence body *MUST* be consumed
// or an error will be returned.
Ok(Self { algorithm, parameters })
})
}
}
impl<'a> Sequence<'a> for AlgorithmIdentifier<'a> {
// The `Sequence::fields` method is used for encoding and functions as
// a visitor for all of the fields in a message.
//
// To implement it, you must define a slice containing `Encodable`
// trait objects, then pass it to the provided `field_encoder`
// function, which is implemented by the `der` crate and handles
// message serialization.
//
// Trait objects are used because they allow for slices containing
// heterogeneous field types, and a callback is used to allow for the
// construction of temporary field encoder types. The latter means
// that the fields of your Rust struct don't necessarily need to
// impl the `Encodable` trait, but if they don't you must construct
// a temporary wrapper value which does.
//
// Types which impl the `Sequence` trait receive blanket impls of both
// the `Encodable` and `Tagged` traits (where the latter is impl'd as
// `Tagged::TAG = der::Tag::Sequence`.
fn fields<F, T>(&self, field_encoder: F) -> der::Result<T>
where
F: FnOnce(&[&dyn Encodable]) -> der::Result<T>,
{
field_encoder(&[&self.algorithm, &self.parameters])
}
}
// Example parameters value: OID for the NIST P-256 elliptic curve.
let parameters = "1.2.840.10045.3.1.7".parse::<ObjectIdentifier>().unwrap();
// We need to convert `parameters` into an `Any<'a>` type, which wraps a
// `&'a [u8]` byte slice.
//
// To do that, we need owned DER-encoded data so that we can have
// `Any` borrow a reference to it, so we have to serialize the OID.
//
// When the `alloc` feature of this crate is enabled, any type that impls
// the `Encodable` trait including all ASN.1 built-in types and any type
// which impls `Sequence` can be serialized by calling `Encodable::to_vec()`.
//
// If you would prefer to avoid allocations, you can create a byte array
// as backing storage instead, pass that to `der::Encoder::new`, and then
// encode the `parameters` value using `encoder.encode(parameters)`.
let der_encoded_parameters = parameters.to_vec().unwrap();
let algorithm_identifier = AlgorithmIdentifier {
// OID for `id-ecPublicKey`, if you're curious
algorithm: "1.2.840.10045.2.1".parse().unwrap(),
// `Any<'a>` impls `TryFrom<&'a [u8]>`, which parses the provided
// slice as an ASN.1 DER-encoded message.
parameters: Some(der_encoded_parameters.as_slice().try_into().unwrap())
};
// Serialize the `AlgorithmIdentifier` created above as ASN.1 DER,
// allocating a `Vec<u8>` for storage.
//
// As mentioned earlier, if you don't have the `alloc` feature enabled you
// can create a fix-sized array instead, then call `Encoder::new` with a
// reference to it, then encode the message using
// `encoder.encode(algorithm_identifier)`, then finally `encoder.finish()`
// to obtain a byte slice containing the encoded message.
let der_encoded_algorithm_identifier = algorithm_identifier.to_vec().unwrap();
// Deserialize the `AlgorithmIdentifier` we just serialized from ASN.1 DER
// using `der::Decodable::from_bytes`.
let decoded_algorithm_identifier = AlgorithmIdentifier::from_der(
&der_encoded_algorithm_identifier
).unwrap();
// Ensure the original `AlgorithmIdentifier` is the same as the one we just
// decoded from ASN.1 DER.
assert_eq!(algorithm_identifier, decoded_algorithm_identifier);
Custom derive support
When the derive
feature of this crate is enabled, the following custom
derive macros are available:
Choice
: derive forCHOICE
enum (seeder_derive::Choice
)Enumerated
: derive forENUMERATED
enum (seeder_derive::Enumerated
)Sequence
: derive forSEQUENCE
struct (seeder_derive::Sequence
)
Derive Sequence
for struct
The following is a code example of how to use the Sequence
custom derive:
use der::{asn1::{Any, ObjectIdentifier}, Encodable, Decodable, Sequence};
/// X.509 `AlgorithmIdentifier` (same as above)
#[derive(Copy, Clone, Debug, Eq, PartialEq, Sequence)] // NOTE: added `Sequence`
pub struct AlgorithmIdentifier<'a> {
/// This field contains an ASN.1 `OBJECT IDENTIFIER`, a.k.a. OID.
pub algorithm: ObjectIdentifier,
/// This field is `OPTIONAL` and contains the ASN.1 `ANY` type, which
/// in this example allows arbitrary algorithm-defined parameters.
pub parameters: Option<Any<'a>>
}
// Example parameters value: OID for the NIST P-256 elliptic curve.
let parameters_oid = "1.2.840.10045.3.1.7".parse::<ObjectIdentifier>().unwrap();
let algorithm_identifier = AlgorithmIdentifier {
// OID for `id-ecPublicKey`, if you're curious
algorithm: "1.2.840.10045.2.1".parse().unwrap(),
// `Any<'a>` impls `From<&'a ObjectIdentifier>`, allowing OID constants to
// be directly converted to an `Any` type for this use case.
parameters: Some(Any::from(¶meters_oid))
};
// Encode
let der_encoded_algorithm_identifier = algorithm_identifier.to_vec().unwrap();
// Decode
let decoded_algorithm_identifier = AlgorithmIdentifier::from_der(
&der_encoded_algorithm_identifier
).unwrap();
assert_eq!(algorithm_identifier, decoded_algorithm_identifier);
For fields which don’t directly impl Decodable
and Encodable
,
you can add annotations to convert to an intermediate ASN.1 type
first, so long as that type impls TryFrom
and Into
for the
ASN.1 type.
For example, structs containing &'a [u8]
fields may want them encoded
as either a BIT STRING
or OCTET STRING
. By using the
#[asn1(type = "BIT STRING")]
annotation it’s possible to select which
ASN.1 type should be used.
Building off the above example:
/// X.509 `SubjectPublicKeyInfo` (SPKI)
#[derive(Copy, Clone, Debug, Eq, PartialEq, Sequence)]
pub struct SubjectPublicKeyInfo<'a> {
/// X.509 `AlgorithmIdentifier`
pub algorithm: AlgorithmIdentifier<'a>,
/// Public key data
pub subject_public_key: BitString<'a>,
}
See also
For more information about ASN.1 DER we recommend the following guides:
- A Layman’s Guide to a Subset of ASN.1, BER, and DER (RSA Laboratories)
- A Warm Welcome to ASN.1 and DER (Let’s Encrypt)
Re-exports
Modules
Module containing all of the various ASN.1 built-in types supported by this library.
Structs
ASN.1 ANY
: represents any explicitly tagged ASN.1 value.
Date-and-time type shared by multiple ASN.1 types
(e.g. GeneralizedTime
, UTCTime
).
DER decoder.
DER encoder.
Error type.
ASN.1 DER headers: tag + length component of TLV-encoded values
ASN.1-encoded length.
Enums
Class of an ASN.1 tag.
Error type.
ASN.1 tags.
Tagging modes: EXPLICIT
versus IMPLICIT
.
Traits
ASN.1 CHOICE
denotes a union of one or more possible alternatives.
Decoding trait.
DER ordering trait.
alloc
ASN.1 DER-encoded document.
Encoding trait.
Marker trait for types whose Ord
impl can be used as ValueOrd
.
ASN.1 SEQUENCE
trait.
DER value ordering trait.
Type Definitions
Result type.
Derive Macros
derive
Derive decoders and encoders for ASN.1 Enumerated
types on a
C-like enum
type.